22,639 research outputs found

    Data-Analytics Modeling of Electrical Impedance Measurements for Cell Culture Monitoring

    Get PDF
    High-throughput data analysis challenges in laboratory automation and lab-on-a-chip devices’ applications are continuously increasing. In cell culture monitoring, specifically, the electrical cell-substrate impedance sensing technique (ECIS), has been extensively used for a wide variety of applications. One of the main drawbacks of ECIS is the need for implementing complex electrical models to decode the electrical performance of the full system composed by the electrodes, medium, and cells. In this work we present a new approach for the analysis of data and the prediction of a specific biological parameter, the fill-factor of a cell culture, based on a polynomial regression, data-analytic model. The method was successfully applied to a specific ECIS circuit and two different cell cultures, N2A (a mouse neuroblastoma cell line) and myoblasts. The data-analytic modeling approach can be used in the decoding of electrical impedance measurements of different cell lines, provided a representative volume of data from the cell culture growth is available, sorting out the difficulties traditionally found in the implementation of electrical models. This can be of particular importance for the design of control algorithms for cell cultures in tissue engineering protocols, and labs-on-a-chip and wearable devices applicationsEspaña, Ministerio de Ciencia e Innovación y Universidades project RTI2018-093512-B-C2

    A microscopy technique based on bio-impedance sensors

    Get PDF
    It is proposed a microscopy for cell culture applications based on impedance sensors. The imagined signals are measured with the Electrical Cell-Substrate Spectroscopy (ECIS) technique, by identifying the cell area. The proposed microscopy allows real-time monitoring inside the incubator, reducing the contamination risk by human manipulation. It requires specific circuits for impedance measurements, a two-dimensional sensor array (pixels), and employing electrical models to decode efficiently the measured signals. Analogue Hardware Description Language (AHDL) circuits for cell-microelectrode enables the use of geometrical and technological data into the system design flow. A study case with 8x8 sensor array is reported, illustrating the evolution and power of the proposed image acquisition.Junta de Andalucía P0-TIC-538

    Radiation in (2+1)-dimensions

    Get PDF
    In this paper we discuss the radiation equation of state p=ρ/2p=\rho/2 in (2+1)-dimensions. In (3+1)-dimensions the equation of state p=ρ/3p=\rho/3 may be used to describe either actual electromagnetic radiation (photons) as well as a gas of massless particles in a thermodynamic equilibrium (for example neutrinos). In this work it is shown that in the framework of (2+1)-dimensional Maxwell electrodynamics the radiation law p=ρ/2p=\rho/2 takes place only for plane waves, i.e. for E=BE = B. Instead of the linear Maxwell electrodynamics, to derive the (2+1)-radiation law for more general cases with EBE \neq B, one has to use a conformally invariant electrodynamics, which is a 2+1-nonlinear electrodynamics with a trace free energy-momentum tensor, and to perform a volumetric spatial average of the corresponding Maxwell stress-energy tensor with its electric and magnetic components at a given instant of time tt.Comment: 7 pages. Accepted for publication in Phys. Lett.

    Programmable low-voltage continuous-time filter for audio applications

    Get PDF
    The implementation of a continuous-time filter (CTF) useful for audio frequency applications is presented in this paper. The filter functions can be programmed and tuned with two independent control variables. The filter here proposed has been designed to work at 1.5 V of power supply and at a maximum of 0.5 /spl mu/A/OTA for the worst case current consumption. Electrical simulations of a Tow-Thomas biquad (TTB) show the possibility of obtaining low-pass and band-pass filter functions over the 10 Hz-40 kHz frequency range by changing a control current over four decades.Comisión Interministerial de Ciencia y Tecnología TIC-97-064

    A characterization of some families of Cohen--Macaulay, Gorenstein and/or Buchsbaum rings

    Get PDF
    We provide algorithmic methods to check the Cohen--Macaulayness, Buchsbaumness and/or Gorensteiness of some families of semigroup rings that are constructed from the dilation of bounded convex polyhedrons of R3\R^3_{\geq}. Some families of semigroup rings are given satifying these properties

    Design of a CMOS closed-loop system with applications to bio-impedance measurements

    Get PDF
    This paper proposes a method for impedance measurements based on a closed-loop implementation of CMOS circuits. The proposed system has been conceived for alternate current excited systems, performing simultaneously driving and measuring functions, thanks to feedback. The system delivers magnitude and phase signals independently, which can be optimized separately, and can be applied to any kind of load (resistive and capacitive). Design specifications for CMOS circuit blocks and trade-offs for system accuracy and loop stability have been derived. Electrical simulation results obtained for several loads agree with the theory, enabling the proposed method to any impedance measurement problem, in special, to bio-setups including electrodes.Ministerio de Ciencia e Innovación TEC2007-6807

    Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD): applications to the design of 3D-printed architectured materials

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-017-1534-9Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.Peer ReviewedPostprint (author's final draft

    The design and implementation of a multimedia storage server tosupport video-on-demand applications

    Get PDF
    In this paper we present the design and implementation of a client/server based multimedia architecture for supporting video-on-demand applications. We describe in detail the software architecture of the implementation along with the adopted buffering mechanism. The proposed multithreaded architecture obtains, on one hand, a high degree of parallelism at the server side, allowing both the disk controller and the network card controller work in parallel. On the other hand; at the client side, it achieves the synchronized playback of the video stream at its precise rate, decoupling this process from the reception of data through the network. Additionally, we have derived, under an engineering perspective, some services that a real-time operating system should offer to satisfy the requirements found in video-on-demand applications.This research has been supported by the Regional Research Plan of the Autonomus Community of Madrid under an F.P.I. research grant.Publicad

    Precise localization for aerial inspection using augmented reality markers

    Get PDF
    The final publication is available at link.springer.comThis chapter is devoted to explaining a method for precise localization using augmented reality markers. This method can achieve precision of less of 5 mm in position at a distance of 0.7 m, using a visual mark of 17 mm × 17 mm, and it can be used by controller when the aerial robot is doing a manipulation task. The localization method is based on optimizing the alignment of deformable contours from textureless images working from the raw vertexes of the observed contour. The algorithm optimizes the alignment of the XOR area computed by means of computer graphics clipping techniques. The method can run at 25 frames per second.Peer ReviewedPostprint (author's final draft
    corecore